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Abstract. We study three-dimensional self-avoiding walks in the presence of a one-dimensional
excluded region. We show the appearance of a universal subleading exponent which is
independent of the particular shape and symmetries of the excluded region. A classical argument
provides the estimate:1 = 2ν − 1≈ 0.175(1). The numerical simulation gives1 = 0.18(2).

1. Introduction

An important problem in statistical mechanics is the study of the critical behaviour
of systems in geometries with boundaries. One usually considers situations in which
the geometric constraint changes the critical behaviour: in the renormalization-group
terminology these are the cases in which the boundary is arelevantperturbation. However,
there are also cases, as the one we are concerned with in this paper, in which the leading
critical behaviour is unchanged and the presence of the boundary appears as anirrelevant
perturbation.

Maybe it is due to their name that the role ofirrelevant operators is generally not well
studied. Indeed, by definition, they do not modify the fixed point of the renormalization-
group transformations. In particular they do not change the values of the critical exponents
and manifest themselves only through subleading corrections to the fixed-point Hamiltonian.
Nonetheless, in any actual computation the fixed-point Hamiltonian is replaced by an
effective Hamiltonian whose parameters are tuned closed to criticality. This means that
as soon as a precise determination of the universal scaling behaviour is needed, it becomes
important to also have good control on the terms responsible for corrections to scaling.

In this paper, we will concentrate on three-dimensional self-avoiding walks (SAWs) in
the presence of an excluded one-dimensional region. We will extend the results of [1–3]
which showed the appearance of a new critical exponent1 ≈ 0.22 for the case of a half-
line. Here we will consider more general one-dimensional regions and we will show that
the value of1 is independent of the shape and symmetries of the excluded region: only
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the dimensionality plays a role. Moreover, we will show that1 can be predicted to a very
good accuracy by a purely geometrical argument.

This paper is organized as follows. In section 2 we give a general discussion of the
relevance of the perturbation introduced by the excluded region and we give a prediction
for the subleading exponent. In section 3 we describe the geometries that we analyse
and the choice of observables which allow the easiest and most precise determination of
1. In section 4 we give a few details of the simulation, while in section 5 we give the
final results. Appendix A presents the computation of the generating function for ordinary
random walks in the presence of excluded hyperplanes which allow a direct check of the
results of section 2. An analogous computation for the case of a single excluded point and
for an excluded needle is reported in [1]. Appendix B contains some unrelated results on
the small-momentum behaviour of the two-point function.

2. Excluded set and corrections to scaling

In the terminology of the field-theoretic approach to critical phenomena, the critical
behaviour of the SAW is governed by the fixed point of theO(n) σ -model analytically
continued ton = 0 [4–9]. The presence of an excluded region corresponds to a perturbation
due to the introduction of an operator which creates vacancies in theO(n) model. Now
consider the correlation function† between a spin at the origin and one in the bulk at location
r; this function will have the scaling form

GR(r;β) ∼ r−(d−2+ηR)FR(r/ξ(β))+ r−(d−2+η′R)F ′R(r/ξ(β))+ · · · . (2)

Here β is the inverse temperature, andξ ∼ (βc − β)−ν is the correlation lengthin the
unperturbed theory; the critical inverse temperatureβc and the exponentν arenot modified
by the presence of the vacancies, unless the excluded regionR is so big that the remaining
setZd \R is effectively a space of lower dimensionality. See [10] to see how thin a set has
to be beforeµ = 1/βc changes. However, the behaviour of the other quantities depends on
whether the perturbation is relevant or irrelevant [11].

(a) If the perturbation isrelevant, then the leading spin–spin decay exponentηR
differs from its bulk valueη (and as a consequence the leading susceptibility exponent
γR = (2 − ηR)ν differs from its bulk valueγ = (2 − η)ν). Likewise, the leading
scaling functionFR differs from its bulk valueF ; in particular, it has a non-trivial angular
dependence [12].

(b) If the perturbation isirrelevant, then ηR and FR are unchangedfrom their bulk
valuesη andF . In particular, the leading scaling functionF hasno angular dependence.
The effects of the perturbation show up only in thenon-leading exponents and scaling
functionsη′R, . . . andF ′R, . . ., which can differ from their bulk values.

In either case,ηR andFR (and indeed all of the exponentsη′R, . . . and scaling functions
F ′R, . . . except for an unknown amplitude) are universal in the sense that they depend only
on theglobal properties of the excluded regionR, such as its dimensionality.

More subtle is the case in which the perturbation is marginal:ηR is equal to the bulk
value but the universal scaling behaviour may be broken by logarithmic violations and
observables associated to the perturbation can show a complete breaking of universality, in

† In the SAW language we have

GR(r;β) =
∞∑
N=0

βNcN,R(r) (1)

wherecN,R(r) is the number of SAWs going from 0 tor in N steps without intersecting the regionR.
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the sense that they can have critical exponent with an explicit dependence from the coupling
of the perturbation [13, 14].

To understand the effect of the introduction of the excluded region we must thus
understand if the perturbation is relevant or irrelevant. We will resort to a geometric
argument. Consider in ad-dimensional space a setE and letd(E) denote the number of
dimensions in which the setE extends to infinity. Let us now recall the fundamental rule in
geometric probability for the dimension of the generic intersectionA∩B of two geometric
setsA andB which are immersed in a space ofd dimensions:

d(A ∩ B) = d(A)+ d(B)− d. (3)

A negative sign ofd(A∩B) means thatA andB do not generically intersect in dimension
d outside any bounded volume. The application of (3) extends also to random geometries
where one considers a probability measure on a configuration space which is concentrated
on a set of events with given Hausdorff dimension.

For example, the generic intersection of two ordinary random walks, which have
Hausdorff dimension 2, has dimension 4− d, and thus they do not generically intersect
in d > 4. By using the well known random-walk representation of the EuclideanO(n)-
vector field theory [15, 16, 8], for which the interaction is concentrated on the intersections
among walks, it is then possible to understand why ford > 4 in the critical region only
a trivial theory is recovered: simply because the walks intersect almost nowhere! We can
say that ford > 4:

(a) the probability of intersections of two random walks in the critical region scales
towards its limiting value with the correlation length asξ4−d ;

(b) critical indices take their free-field (that is mean-field) values, the interaction term
in the Hamiltonian isirrelevant and induces only subleading corrections.

In d = 4 the interaction becomesmarginal and is responsible only for logarithmic
corrections to the critical indices [7]. It is said that 4 is the upper critical dimension of the
model.

In d < 4 the interaction isrelevant and thus it changes the critical indices.
Similar ideas have been used to discuss the critical behaviour of gauge theories and

random surfaces, see for example [17].
Let us now consider the case of walks in the presence of an excluded regionR of

dimensiondR. Consider first ordinary random walks whose Hausdorff dimension is two.
Then the dimension of a generic intersection with the regionR of dimensiondR is

dint = 2+ dR − d. (4)

The previous argument suggests the following cases:
• dR = 0: this is the case in which we are excluding only a finite set of lattice sites.

The upper critical dimension (with its logarithmic corrections) isd = 2;
• dR = 1: this is the case in which we are excluding a finite set of one-dimensional

lines. The upper critical dimension (with its logarithmic corrections) isd = 3.
Formula (4) can also be obtained from other considerations [1]. IfR is adR-dimensional

hyperplane, consider the projection of the walk onR′, the orthogonal complement ofR.
Also the projection is a random walk. The probability of intersection will then be the
probability of first return to the pointR ∩ R′. But the probability that ad-dimensional
random walk eventually passes through a point scales as 1/Nd/2−1 if d > 2, while it is one
if d 6 2. Since in our cased = d−dR, we see that fordint > 0 the walk generically intersects
the regionR, while for dint < 0 the probability vanishes as 1/N−dint/2, in agreement with
our argument. Finally notice that whendR = d − 1, one can apply the results for the
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so-called vicious walkers. Indeed the behaviour ofd one-dimensional vicious walkers† can
be viewed as the behaviour of ad-dimensional walker in a space bounded byd(d − 1)/2
(d − 1)-dimensional hyperplanes [18, 19].

Let us now arrive at the case of SAW. Their Hausdorff dimension is 1/ν (see for
example [7, appendix B]). For the dimension of a generic intersection with the regionR
we obtain

dint = 1

ν
+ dR − d. (5)

Let us consider again a series of cases, remembering that ford 6 4 according to the Flory
formula ν ≈ 3/(d + 2), which is exact ind = 1, 2, must be corrected by logarithmic
violations ind = 4, and is a good approximation ind = 3.
• dR = 0: excluded points are a relevant perturbation only ifd 6 1/ν, that is ind = 1.

We remark that the subcase in which the excluded set consists of a single pointR = P,
whenP is chosen to be a nearest neighbour of the origin of the walk, can be mapped into
a problemwithout vacancies. Indeed each walk ofN steps, starting from the origin, can be
seen as a walk ofN+1 steps starting fromP whose first step is the previous origin. Under
this mapping the asymmetry induced by the exclusion ofP can be seen as the correlation
between the position of the endpoint of the walk with the direction of the first step.
• dR = 1: in d = 1, 2 the perturbation is relevant, but it is already irrelevant ind = 3.
Thus ind = 3 with a finite setR of excluded lines, we expect that, regardless of their

disposition is space, the probability that a walk intersects the regionR scales asξ2−1/ν , or,
sinceξ ∼ Nν , asN2ν−1.

In the field-theoretic language this dimensional argument implies in (2)

η′ = η − dint = η + 2− 1

ν
. (6)

Consequently, ifPk(x) is a homogeneous polynomial of degreek in the coordinates of the
endpoint of the walk, we have

〈Pk(x)〉N,R = Nkν

(
A(k)+ BR(k)

N1
+ · · ·

)
(7)

where〈·〉N,R is the average in the ensemble of walks of lengthN that do not intersectR
and1 a subleading exponent. If (6) holds, we have

1 = −dintν = 2ν − 1. (8)

In general we expect renormalization effects to change (6) and thus (8) introducing an
anomalous dimension. However, experience with three-dimensional models indicates that
these corrections, if not vanishing, are extremely small and thus we expect (8) to be in any
case a very good approximation.

The amplitudeA(k) is not universal, because of an unknown scale factor, but it should
not depend on the excluded region. Moreover, since in the critical limit the distribution
of the endpoint is rotationally symmetric,A(k) vanishes whenever

∫
d�x Pk(x) = 0 where

d�x is the normalized measure on the sphereSd−1. This suggests a very convenient way
to compute the subleading exponent1 induced by the introduction of the excluded region.
The idea is to consider observables which have zero expectation value in the rotationally
invariant continuum limit and which do not vanish under the residual discrete symmetry that
the lattice has after the introduction of the excluded region. For these quantitiesA(k) = 0
so that the leading term scales asNkν−1 which makes the determination of1 much easier.

† Related works on vicious walkers can be found in [20, 21].
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Let us notice that in all this discussion we have always assumed that the first subleading
exponent is related to the introduction of the excluded region. This is true for those quantities
for which 〈Pk(x)〉 would vanish in the absence of the excluded region, i.e. for thosePk(x)

which are not only non-rotationally invariant but which are also not symmetric under the
transformations of the cubic group. If instead〈Pk(x)〉 would not vanish even in the absence
of the excluded region, it is not cleara priori which exponent should show up first. For
cubic-symmetricPk(x) for whichA(k) = 0 an extensive analysis [22, 23] shows that in the
absence of any excluded region

〈Pk(x)〉 ∼ Nkν−1latt (9)

with 1latt ≈ 2ν. For d = 3 this exponent is much larger than (8) and thus, in the presence
of an excluded region, we expect all non-rotationally invariantPk(x) to behave asNkν−1

with 1 given by (8). We should also mention that the exponent1 defined here is unrelated
to the exponentων ≈ 0.5 which controls the leading confluent correction for SAWs in the
absence of any excluded region and which has been the object of much attention in literature
[24–27].

3. The models

We have concentrated upon the problem of three-dimensional SAWs starting from the origin
in the presence of an excluded regionR which consists of a finite collection of half-lines—
we will call them ‘needles’—along the coordinate axes.

For this purpose we have studied the following cases (see figure 1) for the regionR
(for a reason to be clarified later all the needles start from a site whose distance from the
origin is two: for example the needle along the positivez-axis will start from the site with
coordinate(0, 0, 2)):

(1) a needle along one direction;
(2) two needles along the positive and negative directions of an axis;
(3) two needles along two different axes;
(4) four needles in a plane along the two directions of two axes;
(5) three needles along three different axes;
(6) six needles along the two directions of all the three axes.
Notice that in the last case it is necessary that the needles start from a point located at

distance two from the origin, otherwise the SAW starting from the origin would necessarily
touch one of the needles.

Let us now define a few observables which will allow us to study the effect of the
introduction of the excluded region. If(x, y, z) are the coordinates of the endpoint of the
SAW (or, equivalently,(r, θ, φ) in polar coordinates) a natural choice of observables is given
by rlYl,m(θ, φ), l 6= 0, whereYl,m(θ, φ) are the spherical harmonics. If〈rlYl,m(θ, φ)〉 is not
identically vanishing because of the residual cubic symmetry which survives the introduction
of the excluded region, this quantity is a natural candidate for a direct determination of the
exponent1. Indeed, since the critical limit is rotational-invariant, the leading term for
N →∞, i.e.A(k) in formula (7), will vanish and thus this quantity will scale asNlν−1.

Let us now classify the various observables according to the value ofl. For l = 1 the
possibilities are

r(Y1,1(θ, φ)+ Y1,−1(θ, φ)) ∼ x (10)

r(Y1,1(θ, φ)− Y1,−1(θ, φ)) ∼ y (11)

rY1,0(θ, φ) ∼ z. (12)
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Figure 1. The six different geometries we have simulated. For each geometry we have reported,
as a dot, the starting point of the walk (located at the origin) and the starting points of the
excluded needles (located at distance two from the origin).

We can thus defineO1(x) = x and the obvious permutations. This observable is useful
whenever the regionR is not invariant under the inversion of thex-axis.

Let us now considerl = 2. In this case we have

r2(Y2,2(θ, φ)+ Y2,−2(θ, φ)) ∼ x2− y2 (13)

r2(Y2,2(θ, φ)− Y2,−2(θ, φ)) ∼ xy (14)

r2(Y2,1(θ, φ)+ Y2,−1(θ, φ)) ∼ xz (15)

r2(Y2,1(θ, φ)− Y2,−1(θ, φ)) ∼ yz (16)

r2Y2,0(θ, φ) ∼ x2+ y2− 2z2. (17)

We can thus define three observables

O2,1(x, y) = x2− y2 (18)

O2,2(x, y) = xy (19)

O2,3(x, y) = z2− 1
2(x

2+ y2). (20)

It is clear that, whenever a symmetry between two axes exists, the two variablesO2,1 and
O2,3 are equivalent. In our calculation we have thus only considered the last two quantities.

Finally, we have consideredl = 4. In this case many different observables can be
defined. We have only considered

O4,1 = 2
3[x4+ y4+ z4− 3(x2y2+ x2z2+ y2z2)] (21)
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O4,2(x) = x4+ 1
2(y

4+ z4)− 3x2(y2+ z2). (22)

Notice that when the excluded region is symmetric under any exchange of two axesO4,1

andO4,2 are equivalent. It is also worth remarking thatO4,1 andO4,2 do not vanish even
in the absence of any excluded region, as they are invariant under the full cubic group.

Let us now define exactly our observables for the various geometries:
(1) geometry 1 (needle along the positivex-axis): we measureO1 ≡ O1(x), O2 ≡

O2,3(y, z) andO4 ≡ O4,2(x);
(2) geometry 2 (two needles along thex-axis): we measureO2 ≡ O2,3(y, z) and

O4 ≡ O4,2(x);
(3) geometry 3 (two needles along the positivex- and y-axis): we measureO1 ≡

1
2(O1(x)+O1(y)), O2 ≡ 1

2(O2,3(y, z)+O2,3(z, x)) = − 1
2O2,3(x, y), Õ2 ≡ O2,2(x, y) and

O4 ≡ O4,1;
(4) geometry 4 (four needles in thexy-plane): we measureO2 ≡ 1

2(O2,3(y, z) +
O2,3(z, x)) = − 1

2O2,3(x, y) andO4 ≡ 1
2(O4,2(x)+O4,2(y));

(5) geometry 5 (three needles along three different axes): we measureO1 ≡ 1
3(O1(x)+

O1(y)+O1(z)), Õ2 ≡ 1
3(O2,2(x, y)+O2,2(x, z)+O2,2(x, y)) andO4 ≡ O4,1;

(6) geometry 6 (six needles): we measureO4 ≡ O4,1.

4. The Monte Carlo simulation

4.1. Monte Carlo observables

The purpose of our simulation was to compute the mean values of the observables we have
defined in the previous section in the presence of an excluded regionR. A direct strategy
would be to simulate SAWs in the presence of the regionR and then to compute the mean
values of the various observables in the usual way. However, this strategy requires different
simulations for different excluded regionsR. To avoid repeating the runs many times we
have simulated SAWs without any excluded region and then we have reweighted the results
in order to obtain the mean values of interest. Since, as we have previously discussed,
the introduction of the excluded region is an irrelevant perturbation, this strategy does not
introduce any significant loss of efficiency.

Let us suppose that we want to compute〈O〉N,R where〈·〉N,R indicates the ensemble
of SAWs of lengthN that do not intersect the regionR. Then we simply use

〈O〉N,R = 〈Oθ
(R)〉N

〈θ(R)〉N (23)

where 〈·〉N indicates the average in the ensemble of all SAWs of lengthN and θR is an
observable which assumes the value one if a walk does not intersectR and zero otherwise.
Notice moreover that〈θ(R)〉N also gives the probabilitypR that a SAW intersects the
excluded region aspR = 1− 〈θ(R)〉N .

We have used (23) to obtain from our simulation the mean values〈O〉N,R: indeed it is
enough, beside measuring at each Monte Carlo stepi the valueOi , to recordθ(R)i which
assumes the value one if the walk intersectsR, zero otherwise and then estimate〈O〉N,R
by ∑n

i=1Oiθ
(R)
i∑n

i=1 θ
(R)
i

. (24)
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In order to further reduce the variance of our estimates we have also symmetrized our
observables. To clarify the method, suppose we want to compute〈O1〉N,R for geometry 1
(R is the positivex-axis). We could consider

〈xθ(+x)〉N
〈θ(+x)〉N . (25)

A symmetrized alternative is

〈x(θ(+x) − θ(−x))+ y(θ(+y) − θ(−y))+ z(θ(+z) − θ(−z))〉N
〈θ(+x) + θ(−x) + θ(+y) + θ(−y) + θ(+z) + θ(−z)〉N . (26)

It is obvious that this quantity has the same mean value of the previous one. However,
this symmetrization reduces the error on the estimates essentially at no computational cost.
Indeed, since we study all six geometries at the same time, we must check in any case if
the walk intersects any of the axes.

In general, given a geometryR we have considered all the possible setssR of excluded
needles which can be obtained by all the transformations of the cubic group (six for geometry
1, three for geometry 2, 12 for geometry 3, three for geometry 4, eight for geometry 5, one
for geometry 6). To each regionsR we associate a variableθ(sR), which is one if the walk
does not intersect the setsR, zero otherwise andO(sR) which is the suitably transformed
variable. Then we compute〈O〉N,R from

〈O〉N,R =
〈∑{sR} θ(sR)O(sR)〉
〈∑{sR} θ(sR)〉 . (27)

The symmetrization has a large effect on the static variances of the various observables.
For instance, consider for each geometry the ratio

R = var θR

var 1
nR

∑
θ(sR)

(28)

where ‘var’ indicates the static variance andnR is the number of terms in the sum. We find
R = 6.6, 3.2, 3.8, 2.7, 1.8, 1 in the six geometries, which represents a considerable
improvement. The improvement on the error bars is, however, not so large as the
symmetrized observables are more correlated than the unsymmetrized ones. Thus the error
bars are only 20–30% better.

To conclude, let us comment briefly on the determination of the error bars. From a
Monte Carlo run ofn iterations we have estimated〈O〉N,R using

〈O〉N,R =
∑
{sR} θ

(sR)O(sR)∑
{sR} θ

(sR)
(29)

where, as usualO = 1
n

∑
i Oi . To compute the error bars one must take into account

the correlation between the numerator and the denominator: the independent error formula
indeed overestimates the true error bar. ForO1 the difference is about 20–30%, forO2 and
Õ2 it is 4–7%, while forO4 the difference is negligible. We have thus used the following
relation, valid in the large sample limit,

Var

(∑
{sR} θ

(sR)O(sR)∑
{sR} θ

(sR)

)
= 〈

∑
{sR} θ

(sR)O(sR)〉2
〈∑{sR} θ(sR)〉2 Var(A) (30)

whereA is given by

A =
∑
{sR} θ

(sR)O(sR)

〈∑{sR} θ(sR)O(sR)〉 −
∑
{sR} θ

(sR)

〈∑{sR} θ(sR)〉 . (31)
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The variance ofA has been computed using the standard techniques of autocorrelation
analysis [28, 27]. Since the autocorrelation function has a very long tail (due to the fact
that τexp ∼ N/f � τint,X wheref is the acceptance fraction of the algorithm andX a
genericglobal observable), the self-consistent windowing method proposed in [28] does
not work. Indeed even using a large window of 40τint,A, the autocorrelation time is largely
underestimated. To obtain a reliable estimate ofτint we have used the method proposed in
[27, appendix]. We computeτint,X by

τ ′ int,X(M) = 1
2 +

M∑
t=1

ρX(t) (32)

τint,X = τ ′ int,X(M)+ ρX(M)M log

(
N

Mf

)
(33)

whereρX(t) is the normalized autocorrelation function,N the length of the walk,f the
acceptance fraction;M is determined self-consistently and is the smallest integer such that
20τ ′ int,X(M) > M. We have checked thead hoc definition (33) in the case of ordinary
random walks for which exact results are available [28]: the error in the estimation of the
tail turns out to be at most 10%. We have thus set the error bars on the autocorrelation
times adding to the error in the determination ofτ ′ int,X(M), one tenth of the last term in
(33).

4.2. The algorithm

We have simulated SAWs of fixed lengthN in three dimensions without any excluded
regionR. The walk is given byN + 1 lattice points{ωi}, i = 0, . . . , N , and always starts
from the origin, i.e.ω0 = 0. Since all our observables are completely symmetric under the
cubic group, it is not restrictive to fix the first step; we have chosenω1 = (1, 0, 0).

The simulation used thepivot algorithm [29, 30, 28]. In the standard implementation a
siteωk in the walk and an elementg of the lattice symmetry group are chosen randomly, with
uniform probability. The proposed configuration, obtained from the actual one by applyingg

to the part of the walk subsequent toωk, is accepted whenever self-avoiding. This algorithm
is extraordinarily efficient for the study of global observables such as, for example, the
endpoint position; indeed, the integrated autocorrelation time for these observables grows
with the numberN of steps in the walk likeNp, wherep ≈ 0.11 in d = 3, while the CPU
time to produce an independent walk scales likeN which is the optimal situation.

Table 1. Autocorrelation times for the pivot algorithm and our improvement for the observables
O1 (in the geometries where it does not vanish) andpR. HereN = 1000.

Standard pivot Improved pivot
Geometry Observable τint τint

1 O1 6.92± 0.23 1.4869± 0.0030
pR 282± 60 5.381± 0.013

2 pR 280± 60 5.026± 0.011
3 O1 7.73± 0.27 1.4946± 0.0030

pR 307± 68 5.081± 0.012
4 pR 311± 69 4.2485± 0.0083
5 O1 8.58± 0.32 1.4293± 0.0029

pR 312± 70 4.628± 0.010
6 pR 261± 53 2.7910± 0.0048
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Table 2. Number of iterations.

500 1000 2000 4000 8000 16 000 32 000

Niter 3× 107 5× 107 6× 107 7× 107 1× 108 5× 107 2× 107

Table 3. One excluded needle. HereCL denotes the confidence level of the fit.

Geometry 1

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O1 500 −1.5259± 0.0014 0.400 44± 0.000 44 9× 10−7% ν −1 =
1 000 −2.0229± 0.0018 0.398 31± 0.000 60 0.114% 1− ν =
2 000 −2.6751± 0.0028 0.395 84± 0.000 91 14.118% 0.4123± 0.0006
4 000 −3.5322± 0.0044 0.393 2± 0.001 6 62.627%
8 000 −4.6324± 0.0060 0.395 5± 0.002 9 92.618%

16 000 −6.092± 0.015 0.396 2± 0.008 0
32 000 −8.018± 0.040

O2 500 −20.457± 0.047 0.978 13± 0.000 98 29× 10−4% 2ν −1 = 1
1 000 −39.944± 0.089 0.981 8± 0.001 3 3.622%
2 000 −78.25± 0.20 0.985 9± 0.002 0 53.836%
4 000 −155.00± 0.43 0.986 6± 0.003 1 35.367%
8 000 −306.42± 0.85 0.990 8± 0.005 4 26.964%

16 000 −606.0± 3.0 1.005± 0.014
32 000 −1217± 10

O4 500 (−110± 11)× 102 2.277± 0.035 15.228% 4ν −1 =
1 000 (−596± 50)× 102 2.239± 0.044 20.112% 1+ 2ν =
2 000 (−295± 25)× 103 2.182± 0.063 22.338% 2.1754± 0.0012
4 000 (−160± 12)× 104 2.056± 0.096 51.065%
8 000 (−642± 53)× 104 2.10± 0.20 25.931%

16 000 (−304± 41)× 105 1.43± 0.62
32 000 (−82± 34)× 106

However, in our case not all the observables are of a global character: an example is the
probability of intersectionpR. Indeed, as can be seen from table 1, already atN = 1000,
τint,pR ≈ 300. It is easy to understand the origin of these autocorrelation times: indeed
suppose the walk intersectsR and letα be the smallest integer such thatωα ∈ R. Then
all subsequent walks in the simulation will also intersectR at least until a successful pivot
move at pointi with i < α is performed. The probability of such a move isαf/N where
f is the acceptance fraction. Now the problem is that the typicalα is very small: if one
considers the set of walks that intersect at least one of the six needles of the geometry 6,
the mean value of the smallestα such thatωα ∈ R is ≈ 13, with very smallN -dependent
corrections. Thus, a rough estimate of the autocorrelation times should beN/(13f ). For
N = 1000 we havef ≈ 0.45 so that we expectτ ≈ 200 which is indeed the order
of magnitude we find. Moreover, we expectτ to increase asN≈1 as it should for local
observables. Indeed, we find thatτ for pR increases asNp with p ≈ 0.9 except in the
case of geometry 6 where we observep ≈ 0.6, which could, however, well be an effective
exponent in the region 5006 N 6 32 000.

The other observables, such asO1, are instead of a more global character and indeed
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Table 4. Two opposite needles. HereCL denotes the confidence level of the fit.

Geometry 2

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O2 500 −45.97± 0.11 0.9622± 0.0010 22× 10−5% 2ν −1 = 1
1 000 −88.71± 0.20 0.9664± 0.0014 1.206%
2 000 −171.86± 0.46 0.9712± 0.0021 32.894%
4 000 −336.7± 1.0 0.9732± 0.0034 23.052%
8 000 −658.2± 2.0 0.9801± 0.0060 33.624%

16 000 −1292.7± 6.9 0.994± 0.016
32 000 −2575± 25

O4 500 (−299± 12)× 102 2.206± 0.015 11.869% 4ν −1 =
1 000 (−1437± 50)× 102 2.190± 0.019 14.368% 1+ 2ν =
2 000 (−670± 25)× 103 2.162± 0.028 15.761% 2.1754± 0.0012
4 000 (−328± 12)× 104 2.099± 0.045 39.275%
8 000 (−1374± 54)× 104 2.122± 0.085 18.371%

16 000 (−634± 40)× 105 1.80± 0.26
32 000 (−221± 37)× 106

the autocorrelation times are much smaller†. They also increase more slowly withN ; for
O1 we find τint,O1 ∼ N≈0.3.

To eliminate these long autocorrelation times one must increase the frequency of the
moves with the first points of the walk as pivots. We have thus modified the algorithm as
follows. One iteration consists now of the following three moves:
• one move with pivot point inω1,
• one move with pivot pointωk with k uniformly chosen in the interval 1< k 6 13;
• one move with pivot pointωk with k uniformly chosen in the interval 13< k 6 N−1.
With this improvement, the autocorrelation times are greatly reduced. Table 1 contains

a comparison between autocorrelation times for the two algorithms for walks of length
Ntot = 1000. We observed sensible reductions of autocorrelation times for each observable,
but the most impressive results are obtained for the observablepR, which denotes the
fraction of walks that intersect the considered excluded set. To compare CPU times one
should notice that one iteration of the improved algorithm takes three times the CPU time
of an iteration of the standard algorithm. Thus in practice, use of the improved algorithm
allowed us to gain a factor of 15–20 onpR (although no improvement on the exponentp)
and a factor of 1.5–2 on global observables such asO1.

5. The results

We have studied SAWs of lengths 5006 N 6 32 000. The number of iterations for
each value ofN is reported in table 2. The total simulation required 2500 hr of CPU on
a AlphaStation 600 Mod 5/266. We have computed1 studying the quantities we have
previously discussed, whose leading behaviour forN →∞ is

〈Ok〉N = BR(k)Nσ (34)

† When we speak of the autocorrelation time forO1, we intendτint,A as defined in (31), as this is the observable
which controls the error onO1.
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Table 5. Two needles along two different axes. HereCL denotes the confidence level of the
fit.

Geometry 3

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O1 500 −1.6573± 0.0015 0.392 67± 0.000 44 4× 10−8% ν −1
1 000 −2.1859± 0.0020 0.390 38± 0.000 60 0.037% 1− ν =
2 000 −2.8761± 0.0030 0.387 67± 0.000 92 13.770% 0.4123± 0.0006
4 000 −3.7761± 0.0048 0.385 0± 0.001 6 59.748%
8 000 −4.9246± 0.0065 0.387 3± 0.002 9 70.556%

16 000 −6.436± 0.016 0.390 1± 0.008 1
32 000 −8.435± 0.042

O2 500 −10.696± 0.025 0.971 7± 0.001 0 5× 10−5% 2ν −1 = 1
1 000 −20.740± 0.047 0.976 1± 0.001 3 2.063%
2 000 −40.42± 0.11 0.980 9± 0.002 0 55.682%
4 000 −79.86± 0.24 0.981 1± 0.003 4 35.520%
8 000 −157.19± 0.45 0.985 9± 0.005 7 31.462%

16 000 −309.9± 1.6 1.000± 0.015
32 000 −619.8± 5.6

Õ2 500 −0.1650± 0.0081 0.772± 0.036 5.684% 2ν −1 = 1
1 000 −0.276± 0.016 0.730± 0.057 4.327%
2 000 −0.572± 0.035 0.512± 0.092 89.526%
4 000 −0.819± 0.079 0.53± 0.18 74.224%
8 000 −1.07± 0.18 0.77± 0.43 63.693%

16 000 −2.02± 0.67 0.1± 1.4
32 000 −2.2± 2.0

O4 500 (−166± 12)× 102 2.244± 0.025 10.182% 4ν −1 =
1 000 (−864± 52)× 102 2.211± 0.032 16.821% 1+ 2ν =
2 000 (−414± 25)× 103 2.171± 0.046 17.299% 2.1754± 0.0012
4 000 (−214± 12)× 104 2.071± 0.072 40.820%
8 000 (−871± 54)× 104 2.10± 0.14 18.912%

16 000 (−409± 42)× 105 1.56± 0.44
32 000 (−120± 34)× 106

whereσ = kν − 1, k = 1, 2, 4. We have performed standard power-law fits neglecting
the next subleading terms. This introduces a systematic error which in our case could be
particularly serious due to the small value of1. Indeed one expects corrections to (34) of
the formNkν−21 which decay very slowly and could thus give sizeable corrections even
at the relatively large values ofN that we use. To obtain an idea of the systematic error
we have repeated the fits using each time only those values ofN satisfyingN > Ncut.
In this way one obtains different estimates which should converge to1 asNcut goes to
infinity. If the different estimates are essentially independent ofNcut (within error bars)
one can reasonably trust the estimate of1, otherwise one obtains an idea of the size of the
systematic error.

We show the results of our fits for each geometry in tables 3–8. In the first column one
can find the different values ofNcut, the second column gives the raw Monte Carlo data,
the third column gives the estimated value of the exponent and the the fourth column gives
the confidence level of the fit. In the last column we report the ‘classical prediction’ for the
exponentσ , obtained using (8). In the computation of the expectation values we used the
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Table 6. Four needles in a plane. HereCL denotes the confidence level of the fit.

Geometry 4

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O2 500 −25.876± 0.071 0.9439± 0.0012 10−7% 2ν −1 = 1
1 000 −49.00± 0.13 0.9501± 0.0016 0.747%
2 000 −93.52± 0.29 0.9561± 0.0024 34.436%
4 000 −182.09± 0.63 0.9552± 0.0040 19.884%
8 000 −351.1± 1.2 0.9643± 0.0072 35.181%

16 000 −682.1± 4.1 0.981± 0.020
32 000 −1347± 17

O4 500 (−518± 13)× 102 2.1760± 0.0099 3.475% 4ν −1
1 000 (−2425± 55)× 102 2.161± 0.013 6.562% 1+ 2ν =
2 000 (−1104± 27)× 103 2.142± 0.019 7.781% 2.1754± 0.0012
4 000 (−521± 14)× 104 2.094± 0.031 24.042%
8 000 (−2181± 61)× 104 2.1083± 0.057 9.664%

16 000 (−991± 42)× 105 1.86± 0.16
32 000 (−359± 37)× 106

Table 7. Three needles along three different axes. HereCL denotes the confidence level of the
fit.

Geometry 5

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O1 500 −1.8113± 0.0017 0.38443± 0.00045 13× 10−10% ν −1 =
1 000 −2.3764± 0.0022 0.38193± 0.00061 0.012% 1− ν =
2 000 −3.1097± 0.0034 0.37900± 0.00093 12.449% 0.4123± 0.0006
4 000 −4.0587± 0.0053 0.3762± 0.0016 55.622%
8 000 −5.2613± 0.0073 0.3786± 0.0030 58.046%

16 000 −6.833± 0.016 0.3828± 0.0082
32 000 −8.909± 0.046

Õ2 500 −0.1892± 0.0088 0.763± 0.034 3.242% 2ν −1 = 1
1 000 −0.311± 0.017 0.732± 0.052 2.100%
2 000 −0.645± 0.038 0.518± 0.084 81.853%
4 000 −0.952± 0.086 0.50± 0.17 63.392%
8 000 −1.20± 0.17 0.79± 0.39 61.993%

16 000 −2.27± 0.66 0.2± 1.3
32 000 −2.5± 2.2

O4 500 (−282± 12)× 102 2.211± 0.016 5.575% 4ν −1 =
1 000 (−1393± 53)× 102 2.188± 0.021 10.689% 1+ 2ν =
2 000 (−649± 26)× 103 2.159± 0.030 11.283% 2.1754± 0.0012
4 000 (−321± 13)× 104 2.088± 0.048 30.950%
8 000 (−1334± 54)× 104 2.103± 0.089 12.901%

16 000 (−618± 42)× 105 1.73± 0.26
32 000 (−205± 35)× 106

estimate forν given by [27]

ν = 0.5877± 0.0006. (35)
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Table 8. Six needles along the two directions of all the three axes. HereCL denotes the
confidence level of the fit.

Geometry 6

Cut 〈O〉 ± δ〈O〉 σ ± δσ CL

O4 500 (−787± 16)× 102 2.1540± 0.0086 4.443% 4ν −1 =
1 000 (−3606± 67)× 102 2.141± 0.011 7.879% 1+ 2ν =
2 000 (−1611± 35)× 103 2.123± 0.017 9.185% 2.1754± 0.0012
4 000 (−746± 17)× 104 2.078± 0.028 33.022%
8 000 (−3093± 76)× 104 2.097± 0.053 15.301%

16 000 (−1382± 56)× 105 1.89± 0.15
32 000 (−513± 50)× 106

Let us now comment on the results. Let us consider first the observableO1. Since the
estimates forNcut > 4000 are essentially constant within error bars one could estimate

σ =


0.396(3) for geometry 1

0.388(3) for geometry 3

0.379(3) for geometry 5.

(36)

These estimates have very small statistical error bars. However, the fact that the estimates
do not agree within the stated errors is a clear indication that there is a much larger error
due to the neglected corrections to scaling. Indeed a closer look to the data shows that in all
cases there is still an upward trend, although not statistically significant, as the change ofσ

is smaller than the error bars. It is thus more cautious to interpret the results forσ as lower
bounds on the true value. Thus we estimateσ ∼> 0.39± 0.01 and thus1 ∼< 0.20± 0.01.

Let us now consider the observableO2. This quantity shows much larger corrections
to scaling compared with the previous one: indeed in no case can we identify a region of
Ncut where the estimates are constant. In all cases the estimates ofσ clearly increase with
Ncut. Using the results withNcut = 8000 we have

σ ∼>


0.991(5) for geometry 1

0.980(6) for geometry 2

0.986(6) for geometry 3

0.964(7) for geometry 4 .

(37)

We conclude thus thatσ ∼> 0.99± 0.01 so that1 ∼< 0.19± 0.01.
Consider now the observableO4. It has much larger errors than the two previous ones.

Here we can only give a very rough estimateσ ≈ 2.10(10) so that1 ≈ 0.25(10).
Finally let us discuss the results for̃O2. In this case the estimates ofσ are much

lower than expected and indeed for both geometries 3 and 5 they seem to indicate, although
without much confidence,σ ≈ 0.5± 0.2. It thus appears that this observable does not
couple to the leading operator breaking the rotational invariance. This fact can be proved
rigorously for the ordinary random walk: in appendix A we show that for geometries 3 and
5 we have indeed

〈Õ2〉N = 0 (38)

for all values ofN . For the SAW 〈Õ2〉N 6= 0; however, our data show that for this
observable, in formula (7), not onlyA but alsoBR vanishes. Thus, the study of〈Õ2〉N
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Table 9. Probabilities of intersectionpR for the various geometries. HereCL denotes the
confidence level of the fit used to determine1.

Geometry Cut pR ± δpR 1± δ1 CL

1 500 0.182 995± 0.000 067 0.2150± 0.0064 74.926%
1 000 0.194 002± 0.000 070 0.215± 0.012 58.808%
2 000 0.203 434± 0.000 089 0.223± 0.026 40.621%
4 000 0.211 73± 0.000 12 0.16± 0.13 56.695%
8 000 0.218 61± 0.000 14

16 000 0.224 61± 0.000 27
32 000 0.230 41± 0.000 58

2 500 0.346 24± 0.000 12 0.2357± 0.0067 83.318%
1 000 0.364 15± 0.000 12 0.234± 0.013 69.572%
2 000 0.379 28± 0.000 15 0.237± 0.027 48.991%
4 000 0.392 35± 0.000 19 0.176± 0.052 61.677%
8 000 0.403 09± 0.000 22

16 000 0.412 35± 0.000 44
32 000 0.421 16± 0.000 94

3 500 0.334 56± 0.000 11 0.2276± 0.0063 74.457%
1 000 0.352 09± 0.000 11 0.226± 0.012 58.934%
2 000 0.366 96± 0.000 14 0.232± 0.026 39.799%
4 000 0.379 93± 0.000 18 0.168± 0.086 54.075%
8 000 0.390 61± 0.000 21

16 000 0.399 83± 0.000 41
32 000 0.408 74± 0.000 88

4 500 0.583 02± 0.000 15 0.2637± 0.0067 75.629%
1 000 0.605 09± 0.000 15 0.259± 0.013 64.062%
2 000 0.623 32± 0.000 18 0.258± 0.027 43.116%
4 000 0.638 75± 0.000 23 0.195± 0.064 55.552%
8 000 0.651 23± 0.000 25

16 000 0.661 82± 0.000 47
32 000 0.671 8± 0.001 0

5 500 0.460 27± 0.000 13 0.2397± 0.0063 72.307%
1 000 0.481 13± 0.000 13 0.236± 0.012 58.015%
2 000 0.498 65± 0.000 16 0.242± 0.025 38.594%
4 000 0.513 80± 0.000 21 0.177± 0.072 53.900%
8 000 0.526 19± 0.000 24

16 000 0.536 83± 0.000 46
32 000 0.547 0± 0.001 0

6 500 0.745 26± 0.000 16 0.2897± 0.0068 49.055%
1 000 0.764 91± 0.000 14 0.280± 0.012 49.324%
2 000 0.780 69± 0.000 17 0.276± 0.024 30.554%
4 000 0.793 89± 0.000 19 0.206± 0.052 57.904%
8 000 0.804 32± 0.000 20

16 000 0.813 12± 0.000 35
32 000 0.821 26± 0.000 67

allows us to compute a new subleading exponent1′ > 1: from σ ∼ 0.5 we would obtain
1′ ∼ 0.7. Notice, however, that the error bars are too big to really trust this estimate.
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Let us now discuss the behaviour of the intersection probabilitiespR. As discussed
before, pure-dimensional arguments suggest that the probability of a SAW intersecting any
one-dimensional set is vanishing in a three-dimensional space. This argument works of
course in thecontinuumlimit. For SAWs on the lattice this statement translates in the fact
that given a SAW of lengthN , {ωi}i=0,...,N , and a one-dimensional setS such thatω0 is at
a distance of orderNν from S, then the probability that the walk intersectsS goes to zero
for N →∞ asN−1. In our casepR is, however, the probability that the SAW intersects
a one-dimensional setR which is at a finite fixed distance from the origin of the walk. In
this case we expect the intersection probability to tend to a constant asN → ∞ and thus
a behaviour of the form

pR(N) = pR(∞)+ bR

N1
. (39)

The results forpR for the various geometries are reported in table 9, together with
the estimates of1 from a three-parameter fit of the form (39). The estimates indicate
1 = 0.23(3) except for the geometry 6 in which case one would derive a much higher
value of1, 1 ≈ 0.28. These discrepancies should not, however, be taken seriously: fit
(39) is very unstable in the presence of additional subleading corrections. To understand the
size of the systematic error one should expect from fits of the form (39), we have performed
the following test: we have consideredO1 and we have analysed the data as

〈O1〉N
Nν

= a + bN−1 (40)

where we have usedν = 0.5877. In all cases we have obtained estimates1 ≈ 0.16–0.23
and moreover we have founda barely compatible with zero within error bars (for instance
for the geometry 1,Ncut = 4000, we havea = (24± 23) × 10−4). Clearly the additional
corrections still play an important role. It is, however, reassuring that the value of1 is in
essential agreement with what we expect.

6. Conclusions

In this paper we have studied the role played by one-dimensional vacancies in the critical
behaviour of the three-dimensional SAW. As already pointed out in [1, 2] a new critical
exponent arises. We have carefully checked that the exponent depends only on the
dimensionality of the vacancies by verifying its independence from the shape of the excluded
region: in particular, it does not depend on the discrete symmetry which the lattice has after
the introduction of the excluded region.

We have given a geometrical argument to interpret the new exponent and we have thus
derived a classical prediction for it. Of course we expect renormalization effects to change
the classical formula: we will thus write

1 = 2ν − 1+ ηR ≈ 0.175+ ηR. (41)

The quantityηR is an anomalous dimension which is expected to be small. Our numerical
data give

1 = 0.18± 0.02 (42)

so that|ηR| ∼< 0.02. The classical prediction, obtained by settingηR = 0 is thus a very
good approximation.

Let us notice that our estimate of1 is somewhat lower than the estimate of [1],1 ≈ 0.24
and of [2],1 ≈ 0.217±0.013. The origin of these discrepancies is probably in the neglected
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additional corrections to scaling: the results of [1] are obtained from an exact enumeration
and thus probe only very short walks, while the estimate of [2] comes from walks which
have mainlyN ≈ 1000–4000. Here we use longer SAWs and a much higher statistics and
thus we can do a much more detailed study of the role of the next subleading terms. We
thus hope to have a better control of the additional corrections although it is conceivable
that also our present estimate is systematically higher than the true result. We hope that our
error bar, which we believe is very conservative, takes these systematic effects correctly
into account.

Let us finally remark that all the arguments we have given are of extremely general
nature and can thus be used for other systems and geometries.

Appendix A. Critical behaviour of random walks in the presence ofdR-dimensional
vacancies

Consider ad-dimensional lattice� and a regionR. Then let cN(x) be the number of
ordinary random walks, starting from the origin and ending inx, that never intersectR
except for t = 0. In this appendix we will derive a general integral equation for the
generating function which can be solved exactly whenR is a dR-dimensional hyperplane.
In this way we will be able to check the computations of section 2.

Let us start from the recursion relations

c0(x) = δ(x, 0)

cN(x) =
d∑
i=1

[cN−1(x + ei)+ cN−1(x − ei)]
(

1−
∑
α∈R

δ(x, α)

)
for N > 1

(A.1)

whereei is the unit vector in thei-direction. Let us now introduce the generating function

G(x) =
∞∑
N=0

βNcN(x) (A.2)

and its Fourier transform̂G(q). It is then a simple matter to obtain the following equation

Ĝ(q) = 1+ βĜ(q)(2d − q̂2)− β
∫ π

−π

ddk

(2π)d
Ĝ(k)(2d − k̂2)

∑
α∈R

ei(k−q)α (A.3)

where q̂i = 2 sin( qi2 ). We now define the free propagator which coincides (apart from a
factorβ) with the generating function for unconstrained random walks

D(q) = 1

m2
0+ q̂2

= β

1− 2β
∑d

i=1 cosqi
(A.4)

wherem2
0 = 1−2βd

β
. Then (A.3) can be rewritten as

Ĝ(q) = 1

β
D(q)−D(q)

∫ π

−π

ddk

(2π)d
Ĝ(k)(2d − k̂2)

∑
α∈R

ei(k−q)α. (A.5)

This equation is completely general and applies to any excluded regionR.
Let us now restrict ourselves to the case in whichR is thedR-dimensional hyperplane

given by the equationsxdR+1 = · · · = xd = 0. If we now multiply (A.5) by
(2d − q̂2)

∑
η∈R ei(q−k′)η and integrate overq, using the identity 2d − q̂2 = 1

β
− D(q)−1,
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we obtain∫ π

−π

ddq

(2π)d
Ĝ(q)(2d − q̂2)

∑
α∈R

ei(q−k′)α = 1

β

[
1− β

(∫ π

−π

ddq

(2π)d
D(q)

∑
α∈R

ei(q−k′)α
)−1]

.

(A.6)

Inserting it back into (A.5) we finally obtain

Ĝ(q) = D(q)∫ π
−π

dDR k
(2π)DR

D(q1, . . . , qdR , kdR+1, . . . , kd)
(A.7)

whereDR = d − dR. It is easy to check that this solution has the correct properties.
Indeed one can verify immediately thatG(x) = δx,0 wheneverx ∈ R. Notice finally that
for dR = 0 the solution does not become the standard solution for unconstrained random
walks, but gives the generating function for random walks with the excluded origin.

Let us now consider the critical limitm0→ 0 and let us define

IR(m̂
2
0) ≡

∫ π

−π

dDRk

(2π)DR
D(q1, . . . , qdR , kdR+1, . . . , kd)

=
∫ π

−π

dDRk

(2π)DR
1

m̂2
0+ k̂2

(A.8)

wherem̂2
0 = m2

0 + q̂2
‖ and q‖ = (q1, . . . , qdR , 0, . . . ,0). The introduction of the excluded

region will thus be relevant or irrelevant depending on the behaviour ofI (m̂2
0) for m̂0→ 0.

If the limit exists the perturbation is irrelevant, while if the integral diverges the perturbation
is relevant or marginal. This last case corresponds toDR = 1, 2. ForDR = 1, we have

IR(m̂
2
0) =

1

m̂0

√
m̂2

0+ 4
(A.9)

and the critical behaviour is drastically changed since

Ĝ(q) =
√
m2

0+ q̂2
‖
√
m2

0+ q̂2
‖ + 4

m2
0+ q̂2

. (A.10)

In the critical limit we have

Ĝ(q) =
2
√
m2

0+ q‖2
m2

0+ q2
. (A.11)

From this expression it is easy to verify that, forN →∞,

cN ≡
∑
x

cN(x) ≈ 2√
2πd

(2d)NN−1/2 (A.12)

so thatγ = 1
2 which differs from the value ofγ for random walks in free space,γ = 1.

Analogously we have

〈x2
1〉N ≈

N

d
(A.13)

〈x2
d 〉N ≈

2N

d
. (A.14)

The exponentν is not changed, but the amplitudes are, as expected, dependent on the
direction and different from the value they assume in free space,〈x2

1〉N = 〈x2
d 〉N = N/d.



Universality of subleading corrections 4957

If DR = 2, which, as we shall see, corresponds to a marginal operator, we have

IR(m̂
2
0) =

2

π

1

m̂2
0+ 4

K

(
4

m̂2
0+ 4

)
(A.15)

whereK(z) is an elliptic integral. Form̂2
0→ 0, IR(m̂2

0) diverges logarithmically so that we
obtain in the critical limit

Ĝ(q) = − 4π

(m2
0+ q2) log[(m2

0+ q2
‖ )/32]

. (A.16)

Thus, the propagator differs from the unperturbed one only by a logarithmic correction.
From this expression we easily obtain

cN ≡
∑
x

cN(x) ∼ (2d)N

logN
. (A.17)

Thus, in this case we haveγ = 1 as for random walks in free space: however, an additional
logarithmic correction appears as expected in the marginal case. Analogously we find

〈x2
1 − x2

d 〉N ∼
N

logN
. (A.18)

If now DR > 2 IR(m̂2
0) has a finite limit form̂0→ 0 so that in the critical limit

Ĝ(q) = D(q)

IR(0)
. (A.19)

Thus Ĝ(q) is identical to the generating function of unconstrained random walks except
for a multiplicative constant which is related to the total number of walkscN =

∑
x cN(x).

Indeed from (A.19) it follows that for largeN

cN ≈ (2d)N

2dIR(0)
(A.20)

so thatpR, the probability that an unconstrained random walk intersectsR is simply
1 − 1/(2dIR(0)). It is easy to check that this probability tends to zero asd → ∞ at
dR fixed. Indeed, let us compute the large-DR expansion ofIR(0): we start from the
standard representation ofIR(m2

0) in terms of Bessel functions:

IR(m̂
2
0) =

∫ ∞
0

dt e−t (m̂
2
0+2DR)IDR0 (2t) (A.21)

whereI0(t) is the zeroth-order Bessel function of first kind. ExpandingI0(t) aroundt = 0
we finally obtain

IR(m̂
2
0) =

1

m̂2
0+ 2DR

∞∑
n1=0

· · ·
∞∑

nDR=0

(2n1+ · · · + 2nDR)!

(n1! . . . nDR !)2
1

(m̂2
0+ 2DR)2(n1+···+nDR )

(A.22)

so that, forDR→∞,

IR(0) ≈ 1

2DR

(
1+ 1

2DR
+ 3

4D2
R
+ · · ·

)
. (A.23)

It follows that for d →∞, pR ≈ (2dR + 1)/(2d).
Let us now discuss the subleading corrections to (A.19). We need here the small-m̂2

0
expansion ofI (m̂2

0). We start from the well known asymptotic expansion for larget of the
Bessel functionI0(2t)

I
DR
0 (2t) ≈ e2DRt

∞∑
n=0

bn(DR)
(2t)

DR
2 +n

. (A.24)
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Using (A.21) we can rewrite our integral as

IR(m̂
2
0) ≈

∫ 1

0
dt e−tm̂

2
0[e−2t I0(2t)]

DR +
∫ ∞

1
dt e−tm̂

2
0

[
(e−2t I0(2t))

DR −
∞∑
n=0

bn(DR)
(2t)

DR
2 +n

]
+
∫ ∞

1
dt e−tm̂

2
0

∞∑
n=0

bn(DR)
(2t)DR/2+n

. (A.25)

The first two integrals have a regular expansion in terms of powers ofm̂2
0.

Let us now determine the behaviour in̂m2
0 of the generic term appearing in the series

in the last term. Integrating by parts we obtain∫ ∞
1

dt e−tm̂
2
0
bn(DR)
(2t)DR/2+n

= m̂
DR+2n−2
0

2DR/2+n
bn(DR)

∫ ∞
m̂0

2
dξ

e−ξ

ξDR/2+n

= bn(DR)
2DR/2+n

{[ g(k,n)∑
l=1

m̂2l−2
0 (−1)l−1

( l∏
i=1

1

DR/2+ n− i

)][ ∞∑
s=0

(−1)s

s!
m̂2s

0

]

+(−1)g(k,n)m̂DR+2n−2
0 F(m̂2

0)

( g(k,n)∏
i=1

1

DR/2+ n− i

)}
(A.26)

where, fork integer,

g(k, n) =
{
k + n− 1 if DR = 2k

k + n+ 1 if DR = 2k + 1
(A.27)

F(m̂2
0) =


−Ei(−m̂2

0) = − logm̂2
0− γE −

∞∑
k=1

(−1)km̂2k
0

kk!
if DR = 2k

√
π

2
− m̂3

0

∞∑
k=0

(−1)km̂2k
0

(k + 3
2)k!

if DR = 2k + 1.

(A.28)

HereγE is the Euler–Mascheroni constant,γE ≈ 0.577 215 6649. The whole integral can
be represented in terms ofm̂2

0 by

IR(m̂
2
0) =

∞∑
n=0

Anm̂
2n
0 + m̂DR−2

0 C(m̂2
0). (A.29)

An are suitable constants andC(m̂2
0) is a function ofm̂2

0 which is finite for m̂2
0 → 0 for

DR odd, diverging logarithmically forDR even. The second term in (A.29) represents the
effect of the excluded region and corresponds to an exponent1

1 = ν(DR − 2) = 1
2DR − 1 (A.30)

which agrees with our prediction.
To conclude this appendix let us prove a result for more general excluded regions which

we will use in the main text. Let the excluded region be of the formR = ∪di=1Ri where
Ri is some subset of points of theith coordinate axis. Ifi1 6= i2 . . . 6= in, 26 n 6 d, then

〈xi1xi2 . . . xin〉N = 0. (A.31)

In particular, for geometries 3 and 5 we have〈Õ2〉N = 0.
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To prove (A.31) consider (A.5), which, as we already said, is valid for general excluded
regionsR. Using now

∂

∂qi1

∂

∂qi2
. . .

∂

∂qin
D(q)

∣∣∣∣
q=0

= 0 (A.32)

∂

∂qi1

∂

∂qi2
. . .

∂

∂qin

∑
α∈R

ei(k−q)α = 0 (A.33)

for i1 6= i2 . . . 6= in, 26 n 6 d, we obtain

∂

∂qi1

∂

∂qi2
. . .

∂

∂qin
Ĝ(q)

∣∣∣∣
q=0

= 0 (A.34)

from which (A.31) immediately follows.

Appendix B. Large-distance behaviour of the two-point function

In this appendix we will present some results which concern the three-dimensional self-
avoiding walk with no excluded region and we will use it to discuss, along the lines
of [31, 23], the behaviour of the two-point functionG(r;β) in the large-distance region
|r| ∼> Re(β) whereRe(β) is the mean end-to-end distance. Consider now the Fourier
transformĜ(p;β); for β → βc = 1/µ standard scaling theory predicts

Ĝ(p;β)
Ĝ(0;β) = G̃(q) (B.1)

whereq = pRe(β)/6. An important characteristic of̃G(q) is the fact that in the region
q2 ∼< 1, G̃(q) is essentially a free-field propagator, i.e. it can be parametrized as

G̃(q) ≈ 1

1+ q2
. (B.2)

The deviations are small and can be parametrized by a(q2)2 term, i.e. by

G̃(q) ≈ 1

1+ q2+ b2(q2)2
. (B.3)

A strong-coupling (exact-enumeration) study [23] set a bound onb2:

−3× 10−4 ∼< b2 ∼< 0. (B.4)

The constantb2 has also been computed [23] in theε-expansion and in the expansion in
fixed dimension with the result :b2 = −3× 10−4.

Here we want to give a bound onb2 using our Monte Carlo data. A simple computation
gives

b2 = 1− 1

2

0(γ )0(γ + 4ν)

0(γ + 2ν)2
Q (B.5)

where

Q = lim
N→∞

QN ≡ lim
N→∞

〈x4+ y4+ z4〉N
〈x2+ y2+ z2〉2N

. (B.6)

Our Monte Carlo estimates forQN are reported in table B1. It is evident that the data show
strong corrections to scaling. To determineQ we have thus performed a fit of the form

QN = Q+ A

N1
. (B.7)
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Table B1. Mean values for SAWs in the absence of any excluded region.(x, y, z) are the
coordinates of the endpoint of the walk.

N 〈x2 + y2 + z2〉N 〈x4 + y4 + z4〉N QN

500 1 785.8± 1.1 (28 727± 38)× 102 0.900 78± 0.000 46
1 000 4 051.8± 2.0 (14 826± 16)× 103 0.903 09± 0.000 39
2 000 9 167.4± 4.4 (76 027± 81)× 103 0.904 64± 0.000 38
4 000 20 752.9± 9.4 (38 994± 39)× 104 0.905 39± 0.000 36
8 000 46 995± 18 (20 020± 17)× 105 0.906 49± 0.000 32

16 000 106 166± 60 (10 222± 13)× 106 0.906 92± 0.000 47
32 000 240 356± 221 (5 247± 11)× 107 0.908 29± 0.000 78

We find

Q = 0.9091± 0.0016 (B.8)

1 = 0.41± 0.16 (B.9)

χ2 = 1.77 (4 degrees of freedom). (B.10)

The value of1 is in agreement with the estimates of [27]. Using forγ the value [32]
γ = 1.1575(6) we finally obtain

b2 = −(13± 17)× 10−4. (B.11)

Our Monte Carlo data confirm the fact thatb2 is extremely small although we are unable
to compute the actual value.

On the other hand, we can use (B.4) and (B.5) together with the estimates ofγ andν
to obtain an estimate ofQ. We obtainQ = 0.9082(11).
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